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Person perception is a dynamic, evolving process. Because other people are an endless source of social information, people need to update their
impressions of others based upon new information. We devised an fMRI study to identify brain regions involved in updating impressions. Participants saw
faces paired with valenced behavioral information and were asked to form impressions of these individuals. Each face was seen five times in a row, each
time with a different behavioral description. Critically, for half of the faces the behaviors were evaluatively consistent, while for the other half they were
inconsistent. In line with prior work, dorsomedial prefrontal cortex (dmPFC) was associated with forming impressions of individuals based on behavioral
information. More importantly, a whole-brain analysis revealed a network of other regions associated with updating impressions of individuals who
exhibited evaluatively inconsistent behaviors, including rostrolateral PFC, superior temporal sulcus, right inferior parietal lobule and posterior cingulate
cortex.
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INTRODUCTION

Human social interaction is as informationally rich as it is ubiquitous.

As we spend countless hours engaging with other humans, we form

impressions of the people around us�in large part, in an attempt to

predict behavior. However, our fellow interaction partners are not

always so consistent. As such, social interaction requires continuous,

flexible updating of our initial impressions in light of new information.

An abundance of research has accumulated on the neural bases of

‘first impressions’. Much of this research has focused on initial ap-

praisals of other people based on facial characteristics like attractiveness

and perceived trustworthiness (for meta-analysis, see Mende-Siedlecki

et al., 2011). First impressions based upon behavioral information have

been extensively examined as well. This research has shown that our

impressions of the people around us are powerfully influenced by the

behaviors we come to associate with them (Todorov and Uleman, 2002;

Bliss-Moreau et al., 2008; Todorov and Olson, 2008). Behavior-based

impression formation can lead to automatic inferences regarding char-

acter traits (Todorov and Uleman, 2003), and further, can be general-

ized to similar-looking others (Verosky and Todorov, 2010). Typically,

in such studies, people represented by faces paired with negative

behavioral information are subsequently evaluated as being less trust-

worthy, and people paired with positive information are subsequently

evaluated as being more trustworthy (Todorov and Olson, 2008).

Recent neuroimaging work has sought to identify brain regions cru-

cial for forming impressions of others based upon behavioral informa-

tion. The primary region associated with such tasks is the dorsomedial

prefrontal cortex (dmPFC; Mitchell et al., 2004, 2005, 2006; Schiller

et al., 2009; Baron et al., 2011; Cloutier et al., 2011a). Dovetailing with

these results, the dmPFC has also been previously implicated in the

spontaneous retrieval of affective person knowledge about faces previ-

ously learned in the context of behavioral information (Gobbini et al.,

2004; Gobbini and Haxby, 2007; Todorov et al., 2007).

Regions such as the posterior cingulate cortex (PCC; Schiller et al.,

2009; Freeman et al., 2010; Cloutier et al., 2011a;), amygdala (Schiller

et al., 2009; Baron et al., 2011), superior temporal sulcus (STS; Mitchell

et al., 2005; Schiller et al., 2009; Freeman et al., 2010) and inferior

frontal gyrus (IFG; Mitchell et al., 2005; Schiller et al., 2009; Baron

et al., 2011; Freeman; et al., 2010) have also been observed in conjunc-

tion with this type of impression formation task. However, while it is

possible to speculate on a putative network of regions involved in

impression formation, the preponderance of studies implicating the

dmPFC in such tasks is undeniable.

Although there is a substantial body of research on first impressions,

much less is known about how these impressions are updated.

Impression formation is an ongoing process, and initial impressions

must be updated on the basis of new, incoming information�which

may be evaluatively inconsistent with previous impressions. Here, we

explore a phenomenon we describe as impression updating�situations

where new information learned about a target is evaluatively incon-

sistent with a previous impression, thus necessitating an update of that

impression to account for the inconsistency.

Social psychology affords us a host of predictions regarding how

person perception can be affected by such a turn of events (Reeder

and Brewer, 1979; Fiske, 1980; Reeder and Spores, 1983; Skowronski

and Carlston, 1987, 1989). Our impressions of other people may func-

tion as schemas that drive our expectancies of their future behavior

(Fiske and Linville, 1980). When we are faced with information that is

inconsistent with a given schema, we are forced to reassess our im-

pression to account for the new information (Srull and Wyer, 1989).

However, despite previous behavioral work, neuroimaging investiga-

tions of impression updating have just begun. Some recent research

has addressed the neural dynamics of how initial impressions are

updated by behavioral information, in both electrophysiological

(Rudoy and Paller, 2009) and neuroimaging contexts (Baron et al.,

2011; Cloutier et al., 2011b; Ma et al., 2011). Baron and colleagues

presented participants with untrustworthy-, trustworthy- and

neutral-looking faces in the scanner, and in a subsequent phase,

paired some of these faces with valenced behavioral information.

Not only was the dmPFC more active during learning for faces

paired with behaviors, but this activity correlated with a post-scan

measure of learning, suggesting that in the context of this task, the

dmPFC plays an important role in updating initial appearance-based

impressions based upon behavioral information.
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Especially relevant is a recent study by Ma and colleagues, in which

participants read sets of behavioral descriptions that implied a specific

trait about a particular individual. Critically, the last behavior was

manipulated to be either consistent or inconsistent with that implied

trait. Responses in the dmPFC were higher when this last behavior was

trait-inconsistent, compared to when it was trait-consistent (Ma et al.,

2011). Finally, another recent study by Cloutier and colleagues

observed preferentially higher dmPFC activity when targets’ behaviors

were incongruent with their social category (in this case, political

affiliation), as opposed to when they were congruent (Cloutier et al.,

2011b).

The current study focuses on evaluative impression updating over a

long behavioral trajectory. To that aim, we presented participants with

person targets who were paired with five descriptions of valenced be-

haviors (e.g. ‘Ron gave out toys at the children’s hospital during

Christmas’), viewed consecutively. Half of the targets were paired

with behavioral information that remained either consistently negative

or consistently positive, thus requiring little demand for impression

updating. The other half of the targets were paired with behavioral

information that switched valence on the fourth trial. The desired

effect is that the first three pieces of behavioral information create a

strong expectation for that person to behave in a certain manner (for

instance, acting like a good, law-abiding citizen)�an expectation that is

subsequently violated on trials four and five, resulting in a high

demand for impression updating.

We expected that participants would update their impressions of

targets based upon new, inconsistent information. More importantly,

consistent with other studies (Mitchell et al., 2004, 2005, 2006; Schiller

et al., 2009), we expected that evaluative updating of impressions

would recruit regions implicated in impression formation such as

the dmPFC. Finally, based on recent studies (Cloutier et al., 2011b;

Ma et al., 2011), we expected that in addition to these regions, evalu-

ative updating would recruit regions involved in attention and cogni-

tive control.

METHODS

Participants

Twenty-four (14 female) participants volunteered for the fMRI study

and were paid $30 for their participation. They were between the ages

of 18 and 45 years (mean¼ 25.3 years). All participants were

right-handed, had normal or corrected-to-normal vision and reported

no history of neurological illnesses or abnormalities. We acquired in-

formed consent for participation approved by the Institutional Review

Board for Human Subjects at Princeton University. All participants

were fully debriefed at the completion of the experiment.

Face and behavior stimuli

Each participant saw a series of 50 faces taken from the book ‘Heads’

(Kayser, 1997), paired with positively and negatively valenced behav-

iors previously rated on goodness and kindness (Fuhrman et al., 1989).

Each face was paired with five consecutively viewed behaviors, com-

prising one ‘target’. Targets were classified as either evaluatively con-

sistent or inconsistent. Consistent targets consisted of a face paired

with five behaviors of the same valence�either five straight positive

behaviors (consistently positive) or five straight negative behaviors

(consistently negative). Inconsistent targets consisted of a face paired

with three behaviors of one valence, followed by two behaviors of the

opposite valence�either three positive behaviors followed by two nega-

tive behaviors (positive-to-negative), or three negative behaviors fol-

lowed by two positive behaviors (negative-to-positive). Additionally,

participants sometimes saw control targets�faces presented alone on

screen, without accompanying behaviors. All in all, participants

encountered 50 total targets�10 targets corresponding to each of

these five conditions.

Behaviors were combined together in groups of five such that each

group within a given condition would be roughly equated on goodness

and kindness. The average goodness and kindness ratings for each

condition were as follows: consistently negative (M¼ 1.81,

SD¼ 0.61), negative-to-positive (M¼ 4.79, SD¼ 3.15), consistently

positive (M¼ 8.10, SD¼ 0.63), positive-to-negative (M¼ 4.83,

SD¼ 3.20). Faces and behavior valences were counterbalanced between

participants, such that each face was paired with each type of behavior

group an equal number of times. Finally, each participant was given a

unique, optimized target ordering, based upon a genetic algorithm

(Wager and Nichols, 2003, http://wagerlab.colorado.edu/wiki/doku

.php/help/ga/genetic_algorithm_for_fmri) to maximize statistical

power. We note that while facial trustworthiness is not of interest in

this study, the faces we used indeed varied on this dimension. That

said, due to the counterbalancing of faces and behavior valences, any

differences due to facial trustworthiness are assumed to be negligible.

Procedures

Participants were informed that they would be participating in a study

on impression formation. They were told that they would be seeing a

series of faces paired with behaviors, and that they would see multiple

behaviors paired consecutively with each face. Participants were asked

to form an impression of each target, altering that impression if ne-

cessary based on new information they learned as the task went along.

Additionally, participants were told that picturing targets performing

behaviors would likely aid in forming impressions. In scanner, they

saw ten runs of face targets, each paired with five separate behaviors.

Each run consisted of five face targets, one of each condition. Each

run began with a 15 s presentation of a fixation cross. Each target was

split into five face/behavior presentations. Faces and behaviors were

presented together for 6 s. Next, a rating slide appeared for 4 s, during

which the participant rated how trustworthy that individual was, based

upon the information they had learned about him so far. Participants

made their ratings with an MR-safe button box, on a scale ranging

from 1 (very untrustworthy) to 4 (very trustworthy). Subsequently, a

fixation cross appeared for 4 s. This series of events proceeded four

more times per target (with the same face on the screen, paired with

different behaviors each time). Following the fifth behavior, a new

target appeared. All stimuli were projected onto a screen located at

the rear of the bore of the magnet. Participants were able to view these

stimuli via an angled mirror attached to the RF coil placed above their

eyes.

Image acquisition

Blood oxygenation level-dependent (BOLD) signal was used as a

measure of neural activation. Echo planar images (EPI) were acquired

using a Siemens 3.0 Tesla Allegra head-dedicated scanner (Siemens,

Erlangen, Germany) with a standard ‘bird-cage’ head coil

(TR¼ 2000 ms, TE¼ 30 ms, flip angle¼ 808, matrix size¼ 64� 64).

By using 32 interleaved 3-mm axial slices we were able to achieve

near whole brain coverage. Prior to the primary data acquisition

scan, a high-resolution anatomical image (T1-MPRAGE,

TR¼ 2500 ms, TE¼ 4.3 ms, flip angle¼ 88, matrix size¼ 256� 256)

was acquired for subsequent registration of functional activity to the

participant’s anatomy and for spatially normalizing data across

participants.

Image analysis

All fMRI data were analyzed with Analysis of Functional NeuroImages

software (AFNI; Cox, 1996). The Erst four EPI images from each run
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were discarded to allow the MR signal to reach steady-state equilib-

rium. Participants’ motion was corrected using a six-parameter 3D

motion-correction algorithm following slice scan-time correction.

Transient spikes were removed from the signal using the AFNI pro-

gram 3dDespike. Subsequently, data were low-passed filtered with a

frequency cut-off of 0.1 Hz following spatial smoothing with a 6-mm

full width at half maximum (FWHM) Gaussian kernel. The signal was

then normalized to percent signal change from the mean.

To identify regions that were more active when participants were

forming impressions based on behaviors, we contrasted trials in which

faces were paired with behaviors and trials in which faces were pre-

sented alone. This contrast yielded functional regions of interest

(fROIs) involved in learning to associate behavioral information with

faces, and by extension, forming behavior-based impressions of those

person targets. We subsequently analyzed the parameter estimates in

these fROIs as a function of the order of the behaviors (the first three

vs the last two behaviors) and the evaluative consistency of the behav-

iors. Given the large number of fROIs yielded by the contrast of faces

paired with behaviors and faces alone, the parametric map was thresh-

olded at �¼ 0.0001 (uncorrected). Furthermore, to select a minimum

cluster size for corrected significance (P < 0.05), we performed a Monte

Carlo simulation of null-hypothesis data, using the AlphaSim program

included in the AFNI package. The Monte Carlo simulation indicated

that a minimum cluster size of 8 voxels was appropriate.

To generate parameter estimates, we performed voxel-wise multiple

regression on each participant’s preprocessed imaging data.

Twenty-five regressors of interest (five 6000-ms trials per target� 5

types of target) were convolved with a canonical hemodynamic re-

sponse function and entered into our general linear model (GLM).

Additionally, we included several regressors of no interest, including

head motion estimates and time points representing rating slide pres-

entations. Each participant’s parameter estimate maps were projected

into Talairach space (Talairach and Tournoux, 1988) prior to perform-

ing any group-level analyses.

In addition to the fROI analyses, we performed a whole-brain ana-

lysis testing the interaction between trial number (last two trials vs first

three trials) and evaluative consistency (consistent vs inconsistent).

Finally, we performed separate whole-brain analyses contrasting the

last two trials against the first three trials, in both consistent and in-

consistent targets. Because we did not find reliable main effects of the

valence of the behaviors and higher order interactions with this va-

lence, we do not report analyses related to valence. However, we pro-

vide supplemental figures including the valence of the behaviors. All

whole-brain analyses are reported using the same thresholding proced-

ures as described above (P < 0.05 FDR-corrected; voxel-wise threshold,

P < 0.005; minimum cluster-size threshold, 31 voxels).

RESULTS

Behavioral results

Because we were primarily interested in updating impressions, we

focus on the changes in ratings in response to evaluatively inconsistent

information. We computed separate averages across the first three and

last two behaviors, isolating participants’ evaluations of our targets

before and after the potential introduction of evaluatively inconsistent

information. We further subtracted the ratings of control targets (faces

presented without behavioral information) from the consistent and

inconsistent targets’ ratings and recorded the absolute deviation

from the control condition. These deviations provide a measure of

the change in target evaluation. [See Supplementary Figure 1 for the

means across all 5 (target type)� 5 (trial number) conditions].

Participants updated their impressions of person targets based upon

evaluatively inconsistent information. Specifically, the change in

participants’ ratings from the first three to the last two behaviors

was greater for inconsistent targets than consistent targets. A 2 (trial

number: first three behaviors vs last two behaviors)� 2 (consistency:

consistent targets vs inconsistent targets) ANOVA revealed significant

main effects of trial number [F(1,23)¼ 13.37, P < 0.001] and consist-

ency [F(1,23)¼ 89.52, P < 0.001]. Critically, we observed a significant

interaction between trial number and consistency [F(1,23)¼ 69.92,

P < 0.001], such that the absolute deviation in trustworthiness ratings

from the first three to the last two behaviors was greater for inconsist-

ent targets (M¼ 0.58, SE¼ 0.08) than for consistent targets (M¼ 0.29,

SE¼ 0.04).

The mean response time across trials was 1119.41 ms (SE¼ 47.75).

To test for potential differences in difficulty in processing information

about consistent and inconsistent targets, we submitted the response

times to a 2 (trial number: first three behaviors vs last two behaviors) �

2 (consistency: consistent targets vs inconsistent targets) ANOVA.

Neither main effect was significant, nor was the interaction between

trial number and consistency. Nevertheless, we also tested for simple

effects, and observed that the effect of trial number was not significant

for either consistent [t(23)¼ 0.18, P¼ 0.858] or inconsistent targets

[t(23)¼�1.48, p¼ 0.153].

fMRI results

Brain activity associated with impression formation

We contrasted face-plus-behavior trials against face-alone trials. This

method of localizing fROIs associated with forming impressions of

person targets based on behavioral information is consistent with pre-

vious research (Schiller et al., 2009; Baron et al., 2011).

We observed 13 fROIs that responded more strongly to faces paired

with behavioral information than to faces presented alone

(Supplementary Table 1). We next tested which fROIs responded to

the introduction of new behavioral information inconsistent with prior

impressions, looking for a specific pattern of response, such that ac-

tivity remained consistent or dropped from the first three trials (F3) to

the last two trials (L2) for consistent and control targets, but increased

for inconsistent targets.

The only fROI that produced this pattern of response was the

dmPFC. As shown in Figure 1, activity increased in response to incon-

sistent information, but decreased when information was consistent.

We performed a 3 (target type: inconsistent, consistent, control)� 2

(trial number: first three trials vs last two trials) repeated-measures

ANOVA on the � values extracted from this fROI, observing an inter-

action between consistency and trial number [F(2,46)¼ 5.45,

P¼ 0.008, �2
¼ 0.19]. Splitting these analyses by target type, we

observed that dmPFC signal rose from the first three trials to the last

two trials for inconsistent targets [F(1,23)¼ 24.67, P < 0.001,

�2
¼ 0.52]. Conversely, dmPFC signal change was not significant for

consistent [F(1,23)¼ 1.21, P¼ 0.283, �2
¼ 0.05] or control targets

[F(1,23)¼ 0.934, P¼ 0.344, �2
¼ 0.04] (See Supplementary Figure 2

for expanded analyses split by valence).

Brain activity associated with updating impressions

Interaction analysis. We sought to identify brain areas that showed

a stronger L2 > F3 pattern for inconsistent targets than consistent tar-

gets, potentially reflecting their role in updating impressions based

upon new, conflicting information. This interaction analysis showed

that right IPL, left STS, PCC extending into the pulvinar, and bilateral

rlPFC were all significantly more active in the last two trials than the

first three trials for inconsistent targets only (Table 1 and Figure 2). In

addition, right STS showed a similar pattern, though this cluster did

not surpass extent-based thresholding. Visualizations of signal change

Neural dynamics of updating impressions SCAN (2013) 625
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in these regions are provided in Figure 2 (See Supplementary Figure 3

for expanded analyses split by valence).

L2 > F3 analyses, split by target type. To supplement the results of

the interaction analysis, we performed separate L2 > F3 analyses for

both consistent and inconsistent targets. Within consistent targets,

we observed no brain areas that were preferentially active during the

last two trials, while bilateral fusiform gyrus, cuneus and right pulvinar

were more active during the first three trials (Supplementary Table 2,

Figure 3).

However, the L2 > F3 contrast within inconsistent targets yielded

activity in dmPFC, PCC/precuneus, bilateral rlPFC, bilateral dlPFC,

bilateral IPL, bilateral STS and left anterior insula (Supplementary

Table 2, Figure 3). The reverse contrast, F3 > L2, yielded activity in

bilateral fusiform, cerebellum, right lingual gyrus, and inferior occipital

gyrus.

DISCUSSION

To explore the neural dynamics of updating person impressions, we

presented participants with faces paired with behavioral descriptions

that were either consistent or inconsistent in valence. As expected,

forming impressions of these targets based upon behavioral informa-

tion, compared to presentation of faces alone, activated a set of regions

typically associated with similar impression formation tasks, including

the dmPFC. Within this set of regions, only the dmPFC showed pref-

erential activation to updating based on new, evaluatively inconsistent

information, as opposed to updating based on information consistent

with existing impressions. Additional whole-brain analyses pointed to

a larger set of regions involved in updating of evaluative impressions,

including bilateral rlPFC, bilateral STS, PCC and right IPL.

We also observed regions that did not respond differentially as a

function of the evaluative consistency of the behaviors. Specifically,

large portions of inferotemporal cortex, including the bilateral fusi-

form gyri, were less active for the last two trials than the first three

trials for both consistent and inconsistent targets (Figure 3), most

likely a result of habituation in response to the repeatedly-presented

facial stimuli (Kanwisher and Yovel, 2006).

The role of dmPFC in impression updating

The results of the fROI analyses showed that the dmPFC was the only

region that displayed enhanced responses to evaluatively inconsistent

but not to evaluatively consistent information, suggesting that it plays

an integral role in the evaluative updating of person impressions. This

is consistent with previous conceptualizations of the dmPFC’s role in

impression formation (Mitchell et al., 2004; 2005; 2006; Schiller et al.,

2009; Baron et al., 2011; Ma et al., 2011). Surprisingly, the whole

brain interaction analysis of evaluative consistency and order of be-

haviors only yielded sub-threshold dmPFC activity�a discrepancy

most likely due to the low-power nature of our design. In fact, the

simple contrast comparing the last two vs first three behaviors did yield

a large dmPFC activation for inconsistent but not consistent targets

(Figure 3).

Two recent studies have also linked the dmPFC to impression

updating. Ma and colleagues observed increased dmPFC activity in

response to targets that behaved in a manner inconsistent with specific

traits they had been previously associated with (Ma et al., 2011).

In addition, Cloutier and colleagues observed that the dmPFC also

responded preferentially to instances where targets’ behaviors were

inconsistent with their social category (e.g. a Democrat favoring

small government). In the context of this recent research, the present

study suggests that the dmPFC’s role in updating extends more broadly

into instances of general evaluative inconsistency as well.

An alternative explanation of the increased dmPFC activity for in-

consistent targets is that presenting inconsistent information on screen

resulted in a less fluent reading experience. Hence, the increase in

dmPFC activity is indicative of an increased difficulty associated

with these targets. However, we observed no significant differences

in response times across the last two trials between consistent and

inconsistent targets, suggesting that our imaging results cannot be

simply explained in terms of task difficulty.

A functional network for updating impressions

We now turn our attention to the other regions implicated in by our

analyses. How might the STS, IPL, rlPFC and PCC be acting in service

of impression updating? The STS has been previously demonstrated

to play an integral role in a variety of tasks associated broadly with

social processing and social cognition (Hein and Knight, 2008).

Neuroimaging research in the past decade has frequently implicated

the STS in aspects of high-level person perception critical for social

communication, for instance, biological motion (Allison et al., 2000;

Vaina et al., 2001; Grossman and Blake, 2002; Pelphrey et al., 2003a;

Puce and Perrett, 2003; Pelphrey et al., 2004a; Pelphrey et al., 2006)

and facial expressions (static: Haxby et al., 2000; Hoffman and Haxby,

2000; Adolphs, 2002; LaBar et al., 2003; Calder and Young, 2005;

Fig. 1 Parameter estimates from dmPFC ROI from the Facesþ Behaviors > Faces Alone contrast, split by evaluative consistency. Hot activations represent stronger activation for FacesþBehaviors, cold
activations represent stronger activation for Faces Alone. While activity in the dmPFC (indicated by circle) did not change significantly from the first three to the last two trials in consistent targets, there was a
significant increase in dmPFC activity from the first three to the last two trials in inconsistent targets.
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Engell and Haxby, 2007; Ishai, 2008; dynamic: Ghazanfar et al., 2010;

Said et al., 2010).

Meanwhile, the IPL has also been associated with a range of social

cognitive functions, including gaze processing (Wicker et al., 1998;

Pelphrey et al., 2003b; Pelphrey et al., 2004b; Calder et al., 2007),

imitation (Iacoboni et al., 1999; Decety et al., 2002; Leslie et al.,

2004), action perception in the service of understanding intentions

(Gallese et al., 2004; Fogassi et al., 2005; Iacoboni et al., 2005;

Montgomery and Haxby, 2008), self-other distinctions (Ruby and

Decety, 2001; Ruby and Decety, 2003; Uddin et al., 2006) and shared

representations (Keysers et al., 2004; Zaki et al., 2009).

Many of the functions listed above are inherently germane to

impression updating. First and foremost, both the STS and IPL have

been connected to aspects of face processing. The omnipresence of

facial stimuli in our task certainly introduces a prevalent, if implicit

demand to process facial features. Furthermore, as we told our par-

ticipants that they should imagine targets performing the actions they

were paired with, it is possibly not surprising that an area like the IPL,

associated with action perception (especially social actions), should be

implicated.

Of most relevance, a recent review of research on the social brain

suggests that one function of the STS is to predict the behavior of

social agents based on incoming information (Frith and Frith, 2010).

Specifically, the authors offer evidence suggesting that activity in pos-

terior STS increases when a social agent behaves in a manner that is

inconsistent with prior expectancies. In previous research, this incon-

sistency has taken the form of unexpected shifts in gaze (Pelphrey et al.,

2003b; Pelphrey et al., 2004a), as well as unexpected changes in actions

(Saxe et al., 2004). In this sense, posterior STS activity in these tasks

may be representing a social prediction error signal. Behrens and col-

leagues (2008) sought to directly test this possibility in a task in which

participants made decisions based, in part, on a confederate’s advice.

This advice was occasionally unexpectedly incorrect or correct, eliciting

a prediction error correlating with an increase in posterior STS activity,

a signal dissociable from reward-related non-social prediction error

signals observed in the ventral striatum. The results of the present

study are consistent with this framework. On trials when evaluatively

inconsistent information was presented, our participants’ expectations

were violated, and in turn, they were faced with the task of updating

their impressions in order to better predict targets’ future actions.

Fig. 2 Parameter estimates from regions of interest emerging from the interaction analysis between trial number and evaluative consistency. Hot activations indicate preferentially higher responses to the last
two trials compared to the first three trials of each behavioral sequence, but only for inconsistent targets. Right IPL (A), PCC (B), left STS (C) and right rlPFC (D) all showed a similar pattern, in which activity
increased across the last two trials for inconsistent targets, but decreased for control targets.

Table 1 Regions showing significant differences in the interaction contrast of last two trials vs first three trials as a function of consistency

Region Lat x y z #Voxels

Interaction between L2 > F3Inconsistent and L2 > F3Consistent

Inferior parietal lobule R 46.5 �64.5 47.5 317
PCC/pulvinar – 1.5 �31.5 8.5 116
STS L �67.5 28.5 �2.5 86
Rostrolateral PFC R 43.5 55.5 2.5 60
Rostrolateral PFC L �46.5 52.5 2.5 40
STS R 64.5 �34.5 �9.5 28a

All clusters are significant at P < 0.05, after correction for multiple comparisons, unless indicated with an asterisk. x, y, z coordinates reflect peak voxel location in Talairach coordinate system.
aDid not surpass cluster extent-thresholding (k¼ 31).
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It seems likely that the STS and IPL are involved in processing spe-

cific to person targets in the context of this task. Conversely, the PCC

and rlPFC are better suited to aid in more general, task-related pro-

cessing during the updating impressions task.

While the PCC is typically associated with the default mode network

(Gusnard and Raichle, 2001; Greicius et al., 2003; Buckner et al., 2008),

it has also been implicated in a host of seemingly disparate processes,

ranging from representation of subjective value (McCoy et al., 2005;

Kable and Glimcher, 2007; Levy et al., 2010), to autobiographical

memory retrieval (Maddock et al., 2001), to goal-directed cognition

(Spreng et al., 2010). A recent reconceptualization of the PCC’s func-

tion attempts to reconcile these various functions within one parsimo-

nious explanation, suggesting that the PCC is critical for adapting to

changes in the environment (Pearson et al., 2011). This account of the

PCC is extremely in step with the demands of the current experiment,

wherein our participants had to identify relevant changes (i.e. behav-

iors inconsistent with existing impressions of person targets) and sub-

sequently, adjust to those changes and act accordingly (i.e. update their

impressions of person targets, as evidenced by changes in behavioral

ratings).

The lateral PFC has also been linked to high-level cognitive pro-

cesses, including maintaining abstract mental sets (Christoff et al.,

2007), multitasking (Burgess et al., 2001; Burgess et al., 2003; Badre

et al., 2004), and perhaps most importantly, the flexible exertion of

cognitive control (Braver et al., 2003; Braver et al., 2009). Specifically,

activity in the rostral portion of lateral PFC is associated with episodic

control (Koechlin et al., 2003; Kouneiher et al., 2009)�in which a

previously encountered cue modifies the perception or interpretation

of present stimuli (Egner, 2009). In the context of the present study,

this conceptualization of rlPFC’s role is particularly informative. The

rlPFC activity in response to evaluatively inconsistent targets likely

reflects the influence of previously learned information on participants’

evaluations of new information.

Limitations

Several low-level aspects of our design may be influencing our results.

First and foremost, it is possible that the inclusion of trial-by-trial

ratings is imposing an unnaturally high demand to update impressions

upon our participants. While we concede that this is indeed a limita-

tion of our approach, our intention was to collect a moment-to-

moment measure of participants’ impressions, so we could be

absolutely certain that they showed behavioral evidence of updating.

Future work could simply measure participants’ impressions only once

following the presentation of all five behaviors.

Second, we employed a control condition (faces presented alone) in

which we do not account for the reading that participants have to do in

the consistent and inconsistent conditions. We chose to perform the

faces-plus-behaviors vs faces alone contrast because it is consistent with

previous related work (Schiller et al., 2009; Baron et al., 2011). More

importantly, while this confound is unavoidable for our fROI analysis,

our whole-brain analyses do not depend on this contrast.

Convergence with recent work

As discussed previously, recent studies involving trait-inconsistent

updating (Ma et al., 2011) and category-inconsistent updating

(Cloutier et al., 2011b) bear a great deal of relevance for the present

investigation. Comparing between these three studies, we note inter-

esting convergence in the neuroimaging results, even though they focus

on different types of inconsistency. As Figure 4 shows, all three studies

observed higher dmPFC, IPL, STS, PCC and lPFC activity when targets

were behaviorally inconsistent, compared to when they were

consistent.

Fig. 3 Last two trials contrasted against first three trials, split by target type. Inconsistent targets displayed on top, consistent targets displayed on bottom. Hot activations represent stronger activation during
the last two trials of each target, cold activations represent stronger activation during the first three trials of each target. Dorsomedial PFC, PCC/precuneus (A), anterior insula, bilateral STS (B), and bilateral
rostrolateral PFC (C) all show stronger activity during the last two trials, compared to the first three trials, but only when participants were considering evaluatively inconsistent targets. Conversely, bilateral
fusiform gyri showed stronger activity during the first three trials, compared to the last two trials, across both types of targets (B).
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Previous work has observed additional inconsistency-related activity

in a more posterior region of mPFC (referred to as domain-general

pmFC; Ma et al., 2011). One potential explanation for this divergence

lies in the specific contrast with which Ma and colleagues obtained this

result. While we chose to contrast the last two vs the first three trials in

our behavior trajectories, they contrasted activity on only the critical

fourth trial between target types (consistent vs inconsistent). In essence,

the present analysis takes a more global perspective on the updating

process as a whole, while Ma et al. (2011) isolated activity elicited at

the precise moment when trait-inconsistent information was poten-

tially presented. Running a similar analysis on our data yields activity

in domain-general pmFC, as well (Supplementary Figure 4).

Taken together, these studies suggest that flexible updating of person

impressions depends on the coordinated action of functional networks

involved in social cognition and cognitive control. While this repre-

sents only a first step towards elucidating the neural dynamics under-

lying impression updating, a picture is beginning to come into focus,

revealing a network of regions encompassing the dmPFC, IPL, STS,

PCC and rlPFC, associated with this process.

SUPPLEMENTARY DATA

Supplementary data are available at SCAN online.
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