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Abstract Faces are one of the most significant social

stimuli and the processes underlying face perception are at

the intersection of cognition, affect, and motivation. Vision

scientists have had a tremendous success of mapping the

regions for perceptual analysis of faces in posterior cortex.

Based on evidence from (a) single unit recording studies in

monkeys and humans; (b) human functional localizer

studies; and (c) meta-analyses of neuroimaging studies, I

argue that faces automatically evoke responses not only in

these regions but also in the amygdala. I also argue that

(a) a key property of faces represented in the amygdala is

their typicality; and (b) one of the functions of the amyg-

dala is to bias attention to atypical faces, which are asso-

ciated with higher uncertainty. This framework is

consistent with a number of other amygdala findings not

involving faces, suggesting a general account for the role

of the amygdala in perception.

Keywords Amygdala � Face perception � Face evaluation �
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Introduction

In one of the first attempts to formulate a model of the

social brain, Brothers (1990) considered a few regions

primarily focusing on the amygdala, orbitofrontal cortex,

and the superior temporal sulcus. Since then, the number of

regions implicated in social cognition has rapidly prolif-

erated (Adolphs 2009; Lieberman 2010; Todorov et al.

2011a). The two major reasons for this proliferation are

methodological advances in functional neuroimaging

research and the introduction of multiple experimental

paradigms tapping diverse aspects of social cognition.

These aspects range from the study of perception of emo-

tional expressions to the study of representation of others’

mental states and actions. At the same time, various pro-

posals have been made about the core region/s underlying

social cognition. Depending on one’s interests, the seat of

social cognition is either in the medial prefrontal cortex

(Amodio and Frith 2006), the temporoparietal junction

(Saxe and Wexler 2005), or in the inferior frontal gyrus and

the inferior parietal lobule (Gallese et al. 2004). Although

these proposals have great merits, they have been derived

from narrowing down social cognition to specific tasks

such as understanding beliefs and understanding goal-

directed actions. Ultimately, multiple functional brain

networks underlie the complexity of social cognition.

Arguably, a good starting point for building a compre-

hensive model of social cognition is the ability to represent

others as distinct individuals. Understanding actions,

beliefs, and intentions presupposes the ability to perceive

and represent other people as agents. For most people, face

perception and memory is critical for representing others,

and people are extremely adept at that task. Decades of

computer science research have yet to produce a computer

model that approximates human performance of face rec-

ognition (Bowyer et al. 2006; Sinha et al. 2006). Moreover,

faces are not only used to represent and track individuals

over time, but also provide a wealth of social information

ranging from the individual’s membership in social cate-

gories (e.g., age, sex, race) to his or her mental and

A. Todorov (&)

Department of Psychology, Princeton University, Princeton, NJ

08540, USA

e-mail: atodorov@princeton.edu

A. Todorov

Behavioural Science Institute, Radboud University, Nijmegen,

the Netherlands

123

Motiv Emot (2012) 36:16–26

DOI 10.1007/s11031-011-9238-5



emotional states (e.g., bored, anxious, etc.). Not surpris-

ingly, after extremely brief exposures or highly degraded

visual input, people can identify faces (Grill-Spector and

Kanwisher 2005; Yip and Sinha 2002), their race and

gender (Cloutier et al. 2005; Martin and Macrae 2007),

recognize their emotional expressions (Esteves and Öhman

1993), and make a variety of social judgments such as

aggressiveness (Bar et al. 2006), trustworthiness (Todorov

et al. 2009), and sexual orientation (Rule and Ambady

2008). Perception of faces is inherently imbued with affect

(Todorov et al. 2008).

Yet, until recently face perception has been generally

considered a cognitive area of research with forays into

other areas only when emotional expressions or affective

associations with faces are the focus of research. Standard

cognitive models (Bruce and Young 1986) and their cor-

responding neural equivalents (Haxby et al. 2000) are not

framed in social terms, and regions that are dedicated to

face processing are rarely framed as ‘‘social regions.’’ To a

large extent, this probably reflects disciplinary divisions

and interests. The neural underpinnings of face perception

have been primarily studied by vision scientists for whom

faces are a well-defined category of complex stimuli that

can be contrasted to other categories of complex stimuli

such as houses.

Face selectivity in the brain

Vision scientists have had a tremendous success in map-

ping the regions responsible for face perception. Until the

middle of Twentieth century, it was not even established

that the inferior temporal (IT) cortex is involved in vision

and, in particular, object recognition (Gross 1994). Face

selective neurons were discovered in the IT cortex of the

macaque brain in the 1970s (Bruce et al. 1981; Desimone

1991; Perrett et al. 1982). Consistent with these findings,

Positron Emission Tomography studies of humans in the

early 1990s reported face responsive regions in fusiform

and inferior temporal regions (Haxby et al. 1993; Sergent

et al. 1992). Electrophysiological studies recording from

the same regions in epileptic patients found negative

potentials (N200) evoked by faces (Allison et al. 1994).

Subsequent functional Magnetic Resonance Imaging

(fMRI) studies using a variety of categories established a

face selective region in the fusiform gyrus (Kanwisher

et al. 1997; McCarthy et al. 1997). This region—labeled

the fusiform face area (FFA; Kanwisher et al. 1997)—can

be reliably identified in individual subjects and its location

is robust with respect to task demands (Berman et al.

2010). Two other regions can be consistently identified

across most subjects: a region in the posterior Superior

Temporal Sulcus (pSTS) and a region in the occipital

gyrus—labeled the occipital face area (OFA). These

regions are usually referred to as comprising the core

system for perceptual analysis of faces (Haxby et al. 2000;

Said et al. 2011).

Two of the most exciting recent developments in the

field are the combination of fMRI and single cell record-

ings in macaques (Tsao et al. 2006) and the use of Trans-

cranial Magnetic Stimulation (TMS) in humans (Pitcher

et al. 2007). Tsao and her colleagues used fMRI to identify

face selective patches in the macaque brain and then

recorded from these patches. They identified a stunning

number of face selective neurons in these patches. In

contrast to previous studies, which have rarely reported

more than 20% of face selective neurons from the sample

of recorded neurons, Tsao and her colleagues reported

more than 90% of face selective neurons in some of the

patches. Pitcher and his colleagues used TMS to transiently

disrupt the activity of the right OFA (it is not possible to

target the FFA) and found that this affected performance on

face perception tasks.

Undoubtedly, we have accumulated rich evidence for

the importance of the ‘‘core’’ regions in face perception.

However, given the affective and social significance of

faces, the question is whether the core regions are sufficient

to describe face perception. Of course, researchers have

acknowledged the participation of other regions, including

both subcortical and prefrontal, but these regions are usu-

ally considered as part of the ‘‘extended’’ as opposed to

‘‘core’’ system of face processing (Haxby et al. 2000).

In the rest of the paper, I argue that faces automatically

evoke responses not only in the core regions but also in

regions in the medial temporal lobe (MTL). In particular, I

focus on the amygdala and argue that it is an integral part

of the functional network dedicated to face processing. In

the next section of the paper, I review evidence consistent

with a general role of the amygdala in face processing. This

evidence comes from (a) single cell recording studies in

both monkeys and humans; (b) human functional localizer

studies; and (c) meta-analyses of neuroimaging studies

involving faces. In the last section of the paper, I propose a

hypothesis that the key property of faces represented in the

amygdala is their typicality. I also attempt to place this

hypothesis into an overall framework that accommodates

not only face findings but also findings from other stimuli

and other modalities.

Face selective responses in the primate amygdala

The importance of the amygdala for perception, learning,

memory, and behavior is well established (Aggleton 2000).

In almost all cases, the role of the amygdala is related to

the affective significance of stimuli. In this context, it is not
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surprising that the first functional neuroimaging studies

that targeted the amygdala and face perception used faces

expressing emotions (Breiter et al. 1996; Morris et al.

1996). However, it is unlikely that the role of the amygdala

in face processing is limited to processing of emotional

expressions.

At about the time of the discovery of face selective

neurons in IT cortex, it was also discovered that there are

visually responsive neurons in the macaque’s amygdala

and that some of these neurons respond to faces (Sanghera

et al. 1979). A number of subsequent neurophysiology

studies reported face responsive neurons in the amygdala

(Perrett et al. 1982; Leonard et al. 1985; Rolls 1984;

Wilson and Rolls 1993; for a review see Rolls 2000).

Recent studies have confirmed these findings. Nakamura

et al. (1992) showed that the amygdala responds to visual

stimuli that are not relevant to the immediate task, and that

a high proportion of the visual neurons are category

selective with some of the neurons preferring monkey’s

faces and a smaller proportion human faces. Other studies

have found selective responses for emotional expressions

and identity (Gothard et al. 2007) and supramodal neurons

responding to both visual (faces) and auditory (sounds)

social cues (Kuraoka and Nakamura 2007).

Importantly, the monkey neurophysiology findings have

been confirmed in human studies (Fried et al. 1997; Krei-

man et al. 2000). Fried and his colleagues recorded from

neurons in the MTL of patients undergoing treatment for

epilepsy. They found face selective neurons in the amyg-

dala, hippocampus, and entorhinal cortex. Subsequent

studies have shown that the responses of some of these

neurons are modulated by face familiarity (Quiroga et al.

2005; Viskontas et al. 2009). These findings are consistent

with findings from patients with amygdala lesions who

show impairments at face recognition (Aggleton and Shaw

1996), although the most studied patient with bilateral

amygdala damage, SM (Adolphs and Tranel 2000), seems

to be primarily impaired at recognition of fearful

expressions.

The logic of neurophysiology studies on category

selectivity is to present stimuli representing different cat-

egories (e.g., faces, everyday objects, novel objects, etc.)

and look for neurons that show preference for one or more

categories. The same logic underlies neuroimaging studies

that use functional localizers. In such studies, human sub-

jects are presented with faces and a number of other cat-

egories such as houses, hands, chairs, flowers, etc. Such

studies identified the FFA (Kanwisher et al. 1997;

McCarthy et al. 1997; Tong et al. 2000), the OFA (Gauthier

et al. 2000; Puce et al. 1996), and face selective regions in

the pSTS (Allison et al. 2000; Puce et al. 1996). Despite

some controversy about the value of functional localizers

(Friston et al. 2006; Saxe et al. 2006), they are an excellent

tool for identifying category selective regions and then

probe the response properties of these regions. A recent

meta-analysis also shows that, at least in the case of

localizing the FFA, the results are robust with respect to

task demands and control categories (Berman et al. 2010).

If there are face selective neurons in the amygdala, as

suggested by neurophysiology studies, why is it that fMRI

studies that use functional localizers do not detect face

selective voxels in the amygdala? There are, at least, two

primary sets of reasons. First, the amygdala is a very small

structure that is difficult to image not only because of its

size but also because of its location (LaBar et al. 2001;

Zald 2003). Moreover, in almost all neurophysiology

studies, the number of face selective neurons is small,

rarely exceeding 10% of the recorded neurons. This sug-

gests that there would be a few face selective voxels in the

amygdala. Second, given the expected small size of face

selective clusters, it would be difficult to find these clusters

unless one is looking for them. In fact, there is a large

variation across individual subjects in functional localizer

studies. The typical approach in such studies is to threshold

the statistical map of the contrast of faces and the control

category (or categories) at a specified probability value

(e.g., p = .005) and then to record the locations of face

selective regions for each subject. However, the number of

observed peaks can vary from a few or none in some

subjects to a few dozens in other subjects. Researchers

would typically record peaks from the fusiform gyri,

occasionally from the occipital gyri, and pSTS, and rarely

from other regions. Some of this individual variation in

observed peaks is due to a measurement error, which can

be reduced by averaging across subjects. However, func-

tional localizers were specifically introduced to map cate-

gory selective regions for individual brains and, hence, to

avoid the need to conduct group analyses (Kanwisher et al.

1997). The rationale for using localizers is that brains are

individually different and, hence, group alignment can

distort the data.

Not surprisingly, researchers who use face localizers

rarely report group analyses, although these analyses can

be informative and more reliable than individual level

analyses (Poldrack et al. 2009). In a recent meta-analysis of

studies that used functional localizers to localize the FFA,

Berman and colleagues (2010) selected 49 out of 339

papers. These were studies on healthy adults that reported

both the coordinates of the localized FFA and the locali-

zation task. Out of these papers, only nine reported the

group analysis from the face localizer (Chen et al. 2007;

Downing et al. 2006; Eger et al. 2004, 2005; Henson and

Mouchlianitis 2007; Kesler-West et al. 2001; Maurer et al.

2007; Pourtois et al. 2005; Zhang et al. 2008). Four of the

nine studies reported amygdala activation (see Table 1).

Another study did not report a group analysis but reported
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that face selective voxels in the amygdala were identified

by anatomical location and contrast between intact and

scrambled faces (Ganel et al. 2005). Occasionally,

researchers would report that they observed amygdala

activation in face localizer contrasts but would not inves-

tigate this further or report the coordinates (Berman et al.

2010, p. 69; Jiang et al. 2009, p. 1085). It should be noted

that the opposite is also true: emotion researchers interested

in the amygdala would compare faces with another cate-

gory of stimuli but not report group analyses or activations

in posterior areas (Goossens et al. 2009; Hariri et al. 2002).

In other cases, researchers would perform a group analysis

but not individual level analyses (Fitzgerald et al. 2006;

Wright and Liu 2006).

Comparing the studies that found amygdala activation in

response to faces and those that did not shows that the

former had greater statistical power to detect such activa-

tions. First, studies that found amygdala activation tended

to have larger samples (mean n = 14.8 vs. 12.4). Second,

these studies used a less stringent statistical criterion in the

group analysis (the most stringent threshold was p \ .001

uncorrected, which was the minimum criterion in the other

studies). To take two extreme examples, Kesler-West et al.

(2001) and Chen et al. (2007) used the same contrast (faces

vs. scrambled faces) but only Kessler/West et al. reported

amygdala activation in the group analysis. However,

whereas Kessler/West et al.’s study had 21 subjects and

used uncorrected p \ .001, Chen et al.’s study had 5 sub-

jects and used Bonferroni corrected p \ .001 across all

voxels. In principle, it is better to be statistically conser-

vative, but conservative procedures would penalize small

regions, particularly when the sample size of the study is

small. As shown in Table 1, many human studies report

amygdala activation in functional localizer tasks. This is

consistent with high resolution fMRI studies of monkeys

that also find face selective voxels in the amygdala

(Hoffman et al. 2007; Logothetis et al. 1999).

In one of our recent studies (Said et al. 2010), we used a

face localizer and following standard practices recorded the

peaks in fusiform gyri, occipital gyri, and pSTS. These data

are revisited here.1 In the localizer task, subjects were

presented with blocks of faces and chairs and asked to

press a button when an image was repeated (one back task).

As shown in Fig. 1, in addition to the clusters in the fusi-

form gyri (Fig. 1a), the group analysis showed large clus-

ters in bilateral amygdala that were more active for faces

than chairs (Fig. 1b, c). An analysis of individual subjects

data showed that 30 out of 37 subjects had face responsive

voxels in the amygdala. For this analysis, the map of the-

faces-greater-than-chairs contrast was liberally thresholded

at p \ .05 for each individual and then intersected with an

anatomical mask of the amygdala. As with the FFA, there

was individual variation across subjects with respect to the

size and location of the clusters of face selective voxels

(Fig. 2).

These findings suggest that standard functional localiz-

ers can be used to identify face selective voxels in the

amygdala. However, the conclusions may be limited given

that we used a single control category. At the same time,

using a single control category (e.g., scrambled faces,

Table 1 Coordinates of face selective voxels in the amygdala from fMRI studies that compared activation to faces with activation to other

categories

Study Control category Sample size R. amygdala L. amygdala

N x y z x y z

Fitzgerald et al. (2006) Portable radios 20 -24 -3 -20

Ganel et al. (2005) Scrambled faces 11 18 -7 -9

Hariri et al. (2002) Emotional scenes 12 16 -5 -13

Kesler-West et al. (2001) Scrambled faces 21 17 -7 -8 -17 -9 -8

Maurer et al. (2007) Houses and common household objects 12 20 -9 -20

Pourtois et al. (2005) Houses 14 -21 -15 -9

Goossens et al. (2009) Houses 20 22 -3 -12 -18 -3 -16

Said et al. (2010) Chairs 37 17 -5 -10 -17 -2 -10

Wright and Liu (2006) Pixilated patterns 12 22 -7 -10 -9 -3 -10

Zhang et al. (2008) Chinese characters, common objects,

and scrambled images

16 18 -1 -18

The coordinates are reported in Talairach space. Four of the studies (Kesler-West et al. 2001; Maurer et al. 2007; Pourtois et al. 2005; Zhang

et al. 2008) are from the sample of studies in Berman et al. (2010). Two of the studies (Fitzgerald et al. 2006; Wright and Liu 2006) compared

emotional and neutral faces with a control category. To extract face selective voxels in the amygdala, they performed a conjunction analysis of

the individual face contrasts with the control category

1 For this analysis, 13 new subjects were added to the 24 subjects

from Said et al. (2010). These 13 subjects participated in a different

experimental task but in the same face localizer task at the end of the

scanning session.
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houses, etc.) to localize the posterior face selective network

is a common practice and it seems that the type of category

does not seriously affect the localization (Berman et al.

2010; Downing et al. 2006). Nevertheless, we need more

targeted studies that use multiple categories to test for face

selectivity in the amygdala.

In addition to data from single unit recordings and

functional localizer studies, data from meta-analyses of

functional neuroimaging studies also support a general role

of the amygdala in face processing. Two large meta-anal-

yses of PET and fMRI studies on emotional processing

showed that faces are one class of stimuli that most con-

sistently elicits responses in the amygdala (Costafreda et al.

2008; Sergerie et al. 2008). The only stimulus class that

was more potent in eliciting amygdala responses was

gustatory and olfactory stimuli (Costafreda et al. 2008).

Two other meta-analyses (Bzdok et al. in press; Mende-

Siedlecki, Said, and Todorov, under review) analyzed

fMRI studies on face evaluation. These studies typically

presented emotionally neutral faces that varied either on

attractiveness or perceived trustworthiness. Using an

Activation Likelihood Estimation approach, Bzdok and

colleagues analyzed 16 studies. Using a Multi-level Kernel

Density Analysis (MKDA) approach, which treats contrast

maps rather than individual activation peaks as the unit of

analysis (Wager et al. 2008), Mende-Siedlecki and

Fig. 1 Brain regions

responding more strongly to

faces than to chairs: bilateral

fusiform gyri (a) and bilateral

amygdala (b, c). The regions

were identified in a group

analysis (n = 37), p \ .001

(uncorrected)

Fig. 2 Clusters of voxels in the amygdala of individual subjects

responding more strongly to faces than to chairs. The statistical maps

for individual subjects were thresholded at p \ .05 and intersected

with an anatomical mask of the amygdala. Different colors indicate

different clusters within the amygdala. The clusters are shown on a

standardized brain image
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colleagues analyzed 30 studies. In both meta-analyses, one

of the most consistently activated regions across studies

was the amygdala (see Table 2).

To sum up, both single unit recording data and neuro-

imaging data suggest that the primate amygdala contains

neurons that respond to faces.

The role of the amygdala in face processing

The question about the computational role of the amygdala

in face processing is much harder than the question about

establishing face selectivity in the amygdala. Although

initial fMRI studies focused on the role of the amygdala in

processing of fearful expressions (Morris et al. 1996;

Whalen et al. 1998), subsequent studies supported a much

broader role in face processing. First, many studies have

observed amygdala responses not only to fearful but also to

other emotional expressions, including positive expressions

(e.g., Pessoa et al. 2006; Sergerie et al. 2008; Winston et al.

2003; Yang et al. 2002). Second, as described above, meta-

analyses of fMRI studies on face evaluation that typically

use emotionally neutral faces show that the amygdala is

one of the most consistently activated regions in these

studies (Bzdok et al. in press; Mende-Siedlecki et al. under

review). Moreover, many studies have observed non-linear

amygdala responses with stronger responses to both neg-

ative and positive faces than to faces at the middle of the

continuum (Said et al. 2009, 2010; Todorov et al. 2011b;

Winston et al. 2007). Third, amygdala responses have been

observed to bizarre faces (faces with inverted features;

Rotshtein et al. 2001) and to novel faces (Kosaka et al.

2003; Schwartz et al. 2003).

To start answering the question about the computational

role of the amygdala in face processing, one needs to have

a working model of how faces are represented. According

to the idea of face space (Valentine 1991), faces are rep-

resented as points in a multi-dimensional face space

(MDFS). Face space is a high dimensional space in which

every face can be approximated as a point defined by its

coordinates on the face dimensions. These dimensions

define abstract, global properties of the faces. Valentine

(1991) used this idea to account for a number of face

recognition findings, including effects of distinctiveness

(recognition advantage for distinctive faces) and race

(recognition advantage for own race faces). Subsequently,

face space models have been successfully used to account

for a number of other face perception findings (Rhodes and

Jeffery 2006; Tsao and Freiwald 2006) and to model social

perception of faces (Oosterhof and Todorov 2008; Todorov

and Oosterhof 2011; Walker and Vetter 2009). Finally,

both single unit recording and fMRI studies have shown

increased responses in face selective regions as a function

of the distance from the average face (Leopold et al. 2006;

Loffler et al. 2005).

Recently, using a MDFS model, we studied whether the

amygdala and the FFA respond to social properties of faces

or more general properties related to the distance of the

faces from the average face in the model (Said et al. 2010).

In terms of perception, the distance from the average face

could be described as indicating the typicality of the face,

where more distant faces are less typical. We used a

parametric face model (Oosterhof and Todorov 2008) to

generate faces that varied on valence and faces that dif-

fered on valence to a much smaller extent. Importantly,

both types of faces were matched on their distance from the

average face. Behavioral studies also confirmed that the

faces were matched on their perceived typicality.

Contrary to our initial expectation, we found that both

the FFA and the amygdala responded to the distance from

the average face rather than to changes in valence. With

hindsight, coding faces according to their typicality is more

Table 2 Coordinates of voxels in the amygdala identified in (a) meta-analyses of fMRI studies on face evaluation; (b) face localization studies

(see Table 1); and (c) meta-analyses of studies on emotion processing irrespective of faces

Meta-analyses R. amygdala L. amygdala

x y z x y z

Face evaluation studies

Bzdok et al. in press (n = 16) 26 -1 -18

18 -8 -11 -18 -7 -15

Mende-Siedlecki et al. under review (n = 30) 20 -3 -12 -18 -3 -12

Average coordinates for face selective voxels weighted by sample size (Table 1) 18.5 -5.2 -11.9 -18.0 -5.1 -12.1

Emotional processing studies

Costafreda et al. 2008 (n = 94) 22 -6 -12 -22 -6 -12

Sergerie et al. 2008 (n = 148) 22 -5 -12 -21 -6 -14

The coordinates are reported in Talairach space
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parsimonious than coding faces according to their social

value, because the former requires only statistical learning

that extracts the average and variance of the faces

encountered in one’s life. Further, in real life, social attri-

butions from facial appearance and face typicality are

highly correlated (Fig. 3). Finally, the typicality explana-

tion resolved a previous puzzle in the literature on face

evaluation. Whereas some studies have observed linear

responses to face valence with stronger responses to neg-

ative faces (Engell et al. 2007; Todorov and Engell 2008;

Winston et al. 2002), others have observed non-linear

responses with stronger responses to both positive and

negative faces than to faces at the middle of the continuum

(Todorov et al. 2011b). It turned out that in studies that

observed linear responses, face typicality was linearly

related to face valence (with more negative faces perceived

as less typical). In studies that observed non-linear

responses, face typicality was non-linearly related to face

valence (with more negative and more positive faces per-

ceived as less typical). Both patterns of responses could be

explained by the hypothesis that the amygdala responds

more strongly to less typical faces.

What is the functional value of coding face typicality?

Atypical faces, by definition, are less likely to be encoun-

tered and as such are less predictable. That is, they are

associated with higher uncertainty and may require

deployment of additional attentional resources to resolve

uncertainty. The amygdala, which receives input from IT

cortex and projects back not only to IT but also to striate

and extrastriate cortex (Amaral et al. 2003), is in the per-

fect position to modulate attention to infrequent, unex-

pected stimuli that have motivational significance. In other

words, salient, unexpected stimuli can trigger amygdala

responses, which in turn can bias attention to these stimuli

(Vuilleumier 2005). There is a large body of animal work

showing that the amygdala is critical for regulation of

attention (Davis and Whalen 2001; Gallagher 2000; Hol-

land and Gallagher 1999). Recent work also shows that

unpredictable sound sequences evoke sustained activity in

the amygdala in both mice and humans (Herry et al. 2007).

The typicality findings suggest that in the context of face

perception, one of the functions of the amygdala is to

regulate attention. This proposal is consistent with several

other proposals about the role of the amygdala in main-

taining vigilance (Whalen 2007) and detection of salient or

motivationally relevant stimuli (Adolphs 2010; Sander

et al. 2003). This hypothesis could account for stronger

responses to bizarre faces (Rotshtein et al. 2001), novel

faces (Kosaka et al. 2003; Schwartz et al. 2003), and

emotional expressions (Whalen et al. 2009). It is important

to note that both expressions and differences in identity

could be represented within the same MDFS model (Calder

and Young 2005). Finally, this hypothesis is also consistent

with findings about the importance of individual differ-

ences in amygdala functioning (Aleman et al. 2008; Bishop

2008; Hariri 2009). According to the MDFS model, typi-

cality of faces and emotional expressions can vary across

individuals and such differences can result in different
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AFig. 3 Scatter plots of

judgments of face typicality

(‘‘How likely would you be to

see a person who looks like this

walking down the street?’’) and

judgments of face weirdness (a),

attractiveness (b),

trustworthiness (c), and

dominance (d). Each point

represents a face. Judgments are

in standardized units. Typicality
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amygdala responses to the same face stimuli. This is an

important research question to pursue in future studies.

In this framework, face information processed in face

selective regions (e.g., the FFA) is further processed in the

amygdala, where faces that are atypical or unexpected

augment the amygdala’s responses, which in turn augment

responses in face selective regions via feedback projec-

tions. Such general principles can also account for a variety

of other non-face findings. These include stronger respon-

ses to both highly positive and negative visual stimuli

(Sabatinelli et al. 2005), high intensity positive and nega-

tive odors (Anderson et al. 2003) and tastes (Small et al.

2003); loud sounds (Bach et al. 2008); and unpredictable

sound sequences (Herry et al. 2007).

Conclusions

Although this article started with the proliferation of neural

systems involved in social cognition, I focused on one

specific region, the amygdala, and one category of stimuli,

faces. A justification for this choice is that both the

amygdala and perception of faces are at the intersection of

cognition, affect, and motivation. I argued that faces

robustly activate the amygdala and that one of its functions

is to regulate attention to salient, atypical faces.

Undoubtedly, this proposal is an oversimplification. The

amygdala consists of several nuclei with different struc-

tures, connectivity, and functions (Aggleton 2000; Amaral

et al. 2003) that may play different roles in face processing.

In fact, it is likely that the population of neurons that are

face selective is different from the population of neurons

that participate in the regulation of attention. Face selective

neurons are usually located in the basolateral amygdala,

whereas neurons involved in attention are located in the

central nucleus. Unfortunately, current fMRI techniques do

not have a sufficient spatial resolution to study subdivisions

in the amygdala. It should be noted that although the

activation peaks from our meta-analysis of face evaluation

studies (Mende-Siedlecki et al. under review) and the face

selective peaks were different (Table 2), they were in close

proximity (about 3 mm distance).

At a larger scale, the network involved in face pro-

cessing involves a number of regions in addition to regions

in IT cortex and the amygdala. In fact, studies have shown

face selectivity in lateral orbitofrontal cortex (Ó Scalaidhe

et al. 1997; Rolls et al. 2006; Tsao et al. 2008). In our meta-

analysis of face evaluation studies, in addition to the

amygdala, we observed consistent activations across stud-

ies in ventromedial prefrontal cortex, pregenual anterior

cingulate cortex, and left caudate/NAcc. Understanding

face perception would require understanding the cognitive

functions of all these regions and how they interact in the

context of perceiving (and evaluating) faces.
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